Multigrid and Krylov Subspace Methods for Transport Equations: Absorption Case
نویسنده
چکیده
SUMMARY In this paper we look at Krylov subspace methods for solving the transport equations in a slab geometry. The spatial discretization scheme used is a nite element method called Modiied Linear Discontinuous scheme (MLD). We investigate the convergence rates for a number of Krylov subspace methods for this problem and compare with the results of a spatial multigrid scheme.
منابع مشابه
Preconditioned Krylov Subspace Methods for Transport Equations
Transport equations have many important applications. Because the equations are based on highly non-normal operators, they present diiculties in numerical computations. The iterative methods have been shown to be one of eecient numerical methods to solve transport equations. However, because of the nature of transport problems, convergence of iterative methods tends to slow for many important p...
متن کاملKrylov Subspace and Multigrid Methods Applied to the Incompressible Navier-stokes Equations
We consider numerical solution methods for the incompressible Navier-Stokes equations discretized by a nite volume method on staggered grids in general coordinates. We use Krylov subspace and multigrid methods as well as their combinations. Numerical experiments are carried out on a scalar and a vector computer. Robustness and eeciency of these methods are studied. It appears that good methods ...
متن کاملNumerical solution of the incompressible Navier-Stokes equations by Krylov subspace and multigrid methods
We consider numerical solution methods for the incompressible Navier-Stokes equations discretized by a finite volume method on staggered grids in general coordinates. We use Krylov subspace and multigrid methods as well as their combinations. Numerical experiments are carried out on a scalar and a vector computer. Robustness and efficiency of these methods are studied. It appears that good meth...
متن کاملSolution of the Incompressible Navier-Stokes Equations in General Coordinates by Krylov Subspace and Multigrid Methods
In this paper three iterative methods are studied: preconditioned GMRES with ILU preconditioning, GMRESR with multigrid as inner loop and multigrid for the solution of the incompressible Navier-Stokes equations in general coordinates. Robustness and e ciency of the three methods are investigated and compared. Numerical results show that the second method is very promising.
متن کاملMultigrid and Krylov Subspace Methods for the Discrete Stokes Equations
Discretization of the Stokes equations produces a symmetric indefinite system of linear equations. For stable discretizatiom a variety of numerical methods have been proposed that have rates of convergence independent of the mesh size used in the dkretization. In this paper we compare the performance of four such methods, namely variants of the Uzawa, preconditioned conjugate gradient, precondi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1995